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Harmonic oscillator with exponentially decaying mass 
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Department of Mathematics, Chelsea College, London, SW3 6LX, UK 

Received 16 October 1980, in final form 19 January 1981 

Abstract. The problem of a harmonic oscillator with varying mass parameter is reduced by 
canonical transformation to the corresponding constant mass problem and is solved in the 
case of an exponentially decaying mass. It is shown that the constructed canonical 
Hamiltonian has time-independent eigenvalues and eigenvectors. The cases of under- 
critical and overcritical damping are considered in detail. The Green function is calculated 
and the behaviour of coherent states is discussed. 

The theory i s  related to the case of a cavity oscillator with a decaying field as in threshold 
laser operation. In particular, the energy of the field is considered. 

1. Introduction 

Much attention has been paid in recent years to time-dependent quantal systems and 
especially to dissipative systems (Hasse 1975, 1978, Tartaglia 1977, Dodonov and 
Man’ko 1979, Agayeva 1980, Remaud and Hernandez 1980, Stevens 1980). A 
solution of the problem of a variable mass, or variable frequency, harmonic oscillator 
would be welcomed in several branches of physics and considerable effort has been 
devoted to finding invariants of the motion for such a system (Lewis and Riesenfeld 
1969, Sarlet 1978, Dodonov and Man’ko 1979). 

The treatment of a decaying oscillator to be presented in this paper originated in an 
interest in a cavity oscillator in which the electromagnetic field varies with time under 
the action of some reservoir as, for instance, in laser production. The theory that we 
shall develop is applicable to any physical situation involving damped oscillator motion, 
but it is useful to have a definite problem in mind to help fix our ideas, especially in 
relation to the energy of the system. Thus we shall begin by briefly considering a cavity 
oscillator when the field is subjected to some external influence, particularly to a decay. 

The quantisation of the field in a cavity is described by Sargent et a1 (1974). The 
energy of the field 

is quantised to give 

E + H(q ,  p ,  t )  = i p 2 / M ( t )  +;M(t)U:q2,  [q, PI = ih. (1.2) 

The mass is taken as a function of time to simulate externally imposed changes in the 
field, as discussed by Colegrave and Abdalla (1981). For an exponential decay in the 
cavity we take 

M ( t )  = M O  exp(-2yt), y > o .  (1.3) 
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Then, since both 27; and 
the energy of the cavity field is given by 

are proportional to M ( t ) ,  we see from equation (1.1) that 

E = exp(-2yt)Eo, (1.4) 

Eo + H ( Q ,  PI, 

where Eo denotes the energy when M = MO. In quantised form 

where 

H ( Q ,  P )  = ~ P 2 / M ~ + & ~ ~ ~ ~ 2 ,  [Q, PI = ih. 

Combining (1.4) and (1.5), we may define an energy operator 

E(Q, P, t )  = exp(-2yt)H(Q, PI. (1.6) 

Hasse (1975) and Tartaglia (1977) have taken a relation similar to (1.6) to connect 
the energy and the Hamiltonian of a damped oscillator, but it should be noted that their 
H, unlike ours, is explicitly time-dependent. From the relation (1.4) we see the problem 
quite clearly as one of decay, whereas in (1.2) the Hamiltonian consists of two parts, say 
T +  V, where from (1.3) we see that T increases and V decreases with time (or vice 
versa if we change the sign of y ) .  Thus if we start with equations (1.2) and (1.3) to 
describe the system it is not so clear that y>O is necessary for decay. In fact, most 
authors work with y CO in (1.3) and, as we shall discuss later, this does not affect the 
decaying oscillator problem when treated in isolation. 

A quantal treatment of the decay problem based on the Hamiltonian (1.2) together 
with (1.3) (but without the requirement y > 0) has been considered already by many 
authors (see e.g. Hasse 1975, Tartaglia 1977, Dodonov and Man’ko 1979). Our 
approach differs from theirs in that we shall change the system (1.2) to the simple 
time-independent system (1.5) by a time-dependent canonical transformation, to be 
discussed in the next section. Some similarities will be found to the results obtained by 
the above-mentioned authors, but some important differences will be apparent. 

After introducing the canonical transformation in 0 2, we consider the dynamics of 
the decaying oscillator firstly in the wave picture, then in the Heisenberg picture and 
finally we adopt the direct approach of Dirac. We shall calculate the Green function 
and consider the existence of coherent states. Finally we shall discuss the energy of a 
damped cavity oscillator. 

2. The time-dependent canonical transformation 

The scaling transformation 

Q ( t )  = [M(t)/MoI”’~, P ( t )  = [Mo/M(t)11’2p, (2.1) 
makes H(q,p,  t )  of equation (1.2) equal to H(Q,P)  of equation (1.5). This is a 
canonical transformation with generating function in the notation of Goldstein (1950) 
given by 

F2(4, P, t )  = [M(t)/Moll’*Pq. (2.2) 

K(Q,  P, t)=H+aFz/at. (2.3) 

The new canonical Hamiltonian is 
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Using equations (2.1), (2.2) and (2.3) we obtain 

1 1 d M  
K = - P 2  + &fowiQ2 +- -(QP + PQ), 

2MO 4M dt (2.4) 

where we have written PQ in the self-adjoint form i(QP+PQ). For a decaying 
oscillator we choose M ( t )  according to equation (1.3); then equation (2.4) becomes 

(2.5) 
We note that the new Hamiltonian is independent of the time. This fortuitous 
elimination of the time enables us to treat the original time-dependent problem (1.2) 
subject to (1.3) by ordinary time-independent quantum mechanics. In the next section 
we treat the problem by wave mechanics. 

K = 1  2~ /iw0 + l ~ ~ ~ 2 0 ~ ~  - 4 y ( ~ ~  + PQ). 

3. The eigenvalues and eigenfunctions of K 

We shall for the moment restrict ourselves to the case of undercritical damping. 
Overcritical damping, when y > wo, will be considered in 9 4.2 and in the subsequent 
sections. The main purpose of the present section is comparison with the work of other 
authors, notably of Hasse (1975) and of Tartaglia (1977). 

We seek eigenvalues A r  and eigenvectors 11) of the canonical Hamiltonian K given 
by equation (2.5); thus 

K\l)=AiIl). (3.1) 
The corresponding Schrodinger equation is 

The reduced frequency w is defined by 
2 2  w 2 = 6 J o - y .  (3.3) 

Then the eigenvalues are easily found to be 

A /  =hw(l+i ) ,  1 =o ,  1 ,2 , .  . . (3.4) 

&(Q) = Nl exp[-Mo(w -ir)Q2/(2h)lHr(JLQ), (3.5) 

N~ = (a/T)i’4(2L1!)-1’2, CY =Mow/h. (3.6) 

$II(Q, t )  = CLdQ) exp[-i(l+ b ~ t l .  

and the normalised eigenfunctions are 

where 

The corresponding solution of the time-dependent Schrodinger equation K+ = iha$/at 
is 

(3.7) 

We notice that the second part of K, coming from aFz/at, gives rise to the phase factor 
exp[iMoyQ2/(2h)] in (3.5). Remembering the connection (2.1) between Q and the 
original coordinate q, we see that our solutions (3.7) agree with the solutions of Hasse 
(1975) and of Tartaglia (1977) except that their solutions contain a factor exp(-$yt) (in 
our notation). This follows from (3.5) on normalising with respect to q rather than Q. 



2272 R K Colegrave and M Sebawe Abdalla 

To calculate the matrix elements of the original Hamiltonian operator H = 
K -iyh(Q d/dQ +;), related to the energy E by equation (1.6), is straightforward. We 
find that 

(IIHIl’) = (I+q)ti(wi/w),3iyh[lf(l’- 1)1”~(1 +iy/w)~l,lf-2 

+3iyh[l(l- 1)]”~(1 - i y / w ) ~ ~ , ~ , + ~ .  (3.8) 

Thus, in the eigenstate 11) of K, the expectation value of H is 

( H )  = ( I  +;)hwi/w, (3.9) 

which agrees with the result obtained by Hasse (1975) and Tartaglia (1977). 

diagonal form: HD + H = OHU, where 

(n IHdn‘) = (n + + ) h w ~ , , , ,  

Clearly a unitary matrix U exists that will transform the matrix H, given by (3.8), to 

(3.10) n =0 ,  1 , 2 , .  , , , 

We shall give the explicit form for this transformation in 0 7. 

4. Equations of motion 

We shall use the Heisenberg equations with respect to the canonical Hamiltonian K. 
Thus for any operator 0, 

dO/dt = aO//at + (ih)-’[O, K]. 

dQldt + yQ = P/Mo, 

(4.1) 

For the coordinate and momentum this leads to the coupled equations 

dP/dt - 7P = -MowiQ. (4.2) 

4.1. Case of undercritical damping 

Firstly we consider the case when the mass decay rate is below critical, so that 
w 2  = wi - y 2  > 0. Then the solutions of equations (4.2) are oscillatory: 

Q(t)  = [cos wt  - ( y / s )  sin wt]Q(O) + (uMo)-’ sin (wt)P(O), ( 4 . 3 ~ )  

P( t )  = [cos wt + ( y / w )  sin wt]P(O) - ( M o u ~ / o )  sin (wt)Q(O). (4.3b) 

It is interesting to compare these and subsequent results in this section with those of 
Hasse (1975, 1978) and of Dodonov and Man’ko (1979), but we note that for this y 
must be changed in sign (and halved for comparison with the work of Hasse). 

We write equation ( 2 . 5 )  in the form 

K = T +  V-iy[T, V]/(hwi), (4.4) 

where T = P2/(2Mo), V = :Mow;Q2. Then from equation (4.1) 

dT/dt -2yT  = - w i ( Q P +  PQ)/2, 

d V/dt + 2yV = w i (QP .i- PQ)/2. 

Eliminating QP + PQ, we obtain 

(4.5a) 

(4.5b) 

d2 (T+  V)/dt2+4w2(T+ V)=4wiK. (4.6) 



Decaying harmonic oscillator 2273 

Remembering that K is constant in time, we may integrate equation (4.6) to obtain 

H = T + v = ( o o / w ) 2 ~  +;(a + a ‘1 cos 2wt --&a -a  ‘1 sin 2wt 

a = (1 +iy/w)T(O) + (1 -iy/w) ~ ( 0 )  - ( W ~ / W ) ~ K .  

(4.7) 

(4.8) 

where 

Equations (4.5) yield 

QP + PQ = ( 2  y / w 2 ) K  + ( 2 / w ) [ T ( O )  - V(O)] sin 2wt 

+ ( 2 / y ) [ ~ ( 0 )  + V(O) - ( w ~ / w ) ~ K ]  COS 2wt, 

+{cos 2wt - [ ( w ’ -  y 2 ) / ( 2 y w ) ]  sin ~ u ~ } T ( o )  

- i (w?j/  y w )  sin (2wt)  v(o), 

(4.9) 
T = i(wo/w)2[1 -cos 2wt + ( w / y )  sin 2 w t ] ~  

(4.10) 

v = i(wo/w)2[1 -cos 2wt - (U /  y )  sin 2 w t l ~  

+{cos 2wt +[(U’--  y 2 ) / ( 2 y w ) ]  sin 2 w t } ~ ( 0 )  + t ( w g / y w )  sin(2wt)~(0) .  
(4.11) 

4.2. Case of overcritical damping 

We may extend our results to the case when the mass decay rate is so fast that w 2  < 0. In 
this case we define 

(4.12) 

and put w + iq. For instance, for H = T +  V we have from equations (4.10) and (4.11), 
when the damping is overcritical, 

H ( t )  = (wo/T)*(cosh 277t - l )K + [ (1+ y/v)T(O) + (1 - y/77)V(O)] cosh 27t.  (4.13) 

For large values of t we find, with 77 > 0, 

2 2 2  
77 = y  - 0 0 ,  

(4.14) 

(4.15) 

(4.16) 

5. Dirac formalism 

To continue our solution of the decaying oscillator problem, it is convenient to employ 
Dirac notation and introduce 

A( t )  = ( 2 M o ~ ~ o ) - 1 ’ 2 [ M o ~ o Q ( t )  +iP(t)] (5.1) 

[Q, PI = i h j  [A, At] = 1, 

and its adjoint A+(t) .  Then at all times 

(5.2) 
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and equation (2.5) becomes 

K = hwo(AtA+i)-$ihy(At2-A2), (5.3) 

where dK/dt = aK/at = 0. 

aA/at = 0 and equation (4.1) gives 
We see from the definition (5.1) that A depends on t only through Q and P; hence 

dA/dt = -iooA - yAt. ( 5  -4) 

Again, let us begin by considering the case of light damping. On combining equation 
(5.4) with its adjoint we obtain 

d2k/d t2  + w2A = 0, ( 5 . 5 )  

and the solution is 

A(t)  = [cos wt-i(wo/w) sin wt]A(O)-(ylw) sin wtA'(0). (5.6a) 

For the .heavy-damping case, 7' = y 2 - w i  > 0, we make the analytic continuation 
w -* i7  (7 =: 0) to obtain 

A(t)  = [cosh qt -i(wo/7) sinh vt]A(O)-(y/~)  sinh(7t)At(0) (5.6b) 

However, rather than work in the Heisenberg representation, we shall as far as possible 
use the time-free representation described by equations (5.2) and (5.3) or represen- 
tations derived from this by canonical transformation as in the next section. 

6. Diagonalising transformations 

The original Hxmiltonian H (and hence the energy E )  is most simply treated in the 
time-free representation described by equations (1.5) or, equivalently, 

H = h w o ( ~ + ~  + i), [A, At] = 1; (6.1) 

but, to continue with our analysis and compare with the w0i.k of other authors, we shall 
need to change to a representation in which K is diagonal. 

6.1. Case of undercritical damping 

The canonical transformation 

cosh U -i sinh U)(  A )  (A".) -* (B"1> = (i sinh U cosh U A t  ' 
with 

cosh U = [ ( w O + u ) / ( 2 ~ ) ] ~ / ~ ,  sinh U = [ (0~-w) / (2w) ]~ /~ ,  (6.3) 

causes the canonical Hamiltonian K given by equation (5.3) to assume a form which 
could be anticipated from the eigenvalues given by equation (3.4): 

K + K '  = hw(B'B +;), [B, Bt] = 1. (6.4) 

H = h ( w i / w ) ( B  t~ + 3) + lih y ( w o / w ) ( B t 2  - B'). (6.5) 

The original Hamiltonian H = hwo(A'A +;) transforms to 
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Again, we have the expectation value of Hasse (1975) and of Targalia (1977) given by 
equation (3.9). 

From equations ( 5 . 6 ~ )  and (6.2), or by solving the Heisenberg equation of motion 
for B, we find that 

B(t) = [A(O) cosh U -iAt(0) sinh U ]  exp(-iwt), (6.6) 
from which it may be checked that B'B, and hence K, is time-independent, The original 
Hamiltonian H, on the other hand, is dependent on the time. This reflects the fact that 
H and K do not commute, hence H cannot be a constant of the motion. 

It is interesting to apply the transformation (6.2) a second time; thus 

cosh2u -isinh2u)( A )  - _  - l ( w o  -iy)( A )  
(6.7) (:t)=(isinh2u cosh2u A' w iy 00 A' 

We then find 

K + I? ( y  + - y )  = hwo(B+B + 3) + $ih y ( B t 2  - B2), [B, B t] = 1. (6.8) 
Comparing with equation (5.3), we see that the only difference between the represen- 
tations is the sign of y. This confirms a point that we mentioned in the Introduction: the 
system is invariant with respect to the symmetry y + - y. 

6.2. Case of overcritical damping 

The spectrum described by equation (3.4) becomes continuous as y + wo. For y > wo 
we need a different form for the Hamiltonian K to preserve its Hermitian nature. We 
transform away the first part of the expression given in equatioa (5.3), rather than the 
second part. Thus we let 

cosh U -i sinh v) (A"), 
cosh U (2') + (c";) = (i sinh v (6.9) 

with 

cosh U = [(Y + .1)/(277)11'2, sinh U = [ ( ~ - q ) / ( 2 q ) ] ~ ' ~ .  (6.10) 

Then, corresponding to equations (6.4) and (6.5), we find 

K + KII= -$hq (cT2 - C2), 

H + H'I = ~ w o (  y / q ) ( ~ + ~  + 
[C, Ct] = 1, 

+ $ih(wi/w)(Ct2 - c). 
(6.11) 

(6.12) 

The time dependence of the operator C is found easily from its equation of motion 
dC/dt = (ih)-'[C, K"]. We obtain 

(6.13) C( t )  = C(0)  cosh qt - C'(0) sinh qf, 

from which it may be checked that K given by equation (6.11) is time-independent. 
Let us apply the transformstion (6.9) a second time: 

(:t)=(isinh2v cosh20 -isinh2v)( cosh2v A' A )  - _  - q l(  iwo y -iwo)(it). y 
(6.14) 

Corresponding to equation (6.8) we find 

K + B ( w o +  -WO)  = -hwo(e te++) - t ik r ( e+*-  C2), [e, e'] = 1. (6.15) 
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Comparing with equation (5.3), we see that this corresponds to the obvious symmetry 
wo + -wo. Of course both symmetries y + - y, wo  + -wo apply irrespective of the 
strength of the damping. Putting 77 + -iw in (6.14), w + i7 in (6.7) gives the cor- 
responding transformation in the undercritical and overcritical cases respectively. 

We shall continue our investigation of the case of overcritical damping in the next 
section. 

7. Connection with the Schrodinger representation 

We find that the matrix elements given by equation (3.8) may be obtained from an 
operator 

H , = h ( w ~ / w ) ( D t D + : ) + : i h y [ ( l - i y / o ) D t 2 - ( l + i y / w ) D 2 ] ,  (7.1) 

[D, Dt ]  = 1, D ’ D ~ W ~ ) =  mlm), m = 0 , 1 , 2  , . . . .  (7.2) 

H~+EI= U’HJJ, (nirlin‘) = hwo(n +;)ann, (7.3) 

where 

We can check our working in 00 3 and 6.1 by seeking a canonical transformation 

that diagonalises H, to a form in agreement with equation (6.1). By writing the 
transformation in the form 

ei4 cosh w -isinh w )( D )  (f’) =(  isinh w e-i’ cosh w Dt ’ (7.4) 

subject to [D, D’] = 1, we find 

27 = hw,(D’D +;), DtDln)  = nln), n = 0 ,  1 , 2 , .  . . (7.5) 

where 

We return now to the case of heavy damping. The Schrodinger equation is easily 
solved in this case. The Hamiltonian is given by equation (6.11) and the eigenvalue 
equation becomes 

ihT(Qd/dQ (Q) = A A  (Q). (7.7) 

The spectrum is continuous, the system being similar to a repulsive oscillator (Leach 
1980). Corresponding to an eigenvalue A, -CO < A < m,,the eigenfunction is 

, (7.8) $(Q, A )  = ( 2 ~ 7 7 h ) - 1 / 2 Q - 1 / 2 - i A / ( r l h )  

with the usual continuous-spectrum normalisation 

(7.9) 

This completes the wave-mechanical solution of the decaying oscillator which we 
started in Q 3. 
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8. The Green function 

The Green function G(Q, Qo, t) is the solution of the Schrodinger equation with initial 
condition 

G(Q, Qo, O)=a(Q-Qo). (8.1) 

Q(- t )G(Q,  Q o ,  t ) =  Q o G ( Q - Q o ) .  (8.2) 

We follow Sargent et a1 (1974) by writing this in the form 

8.1, Case of undercritical damping 

We work in the Heisenberg representation and insert our result ( 4 . 3 ~ )  into equation 
(8.2), taking care to change the sign of y for t < 0. This leads to 

(l/G)aG/aQ = iMow(h sin ot)-l{[cos w t  - ( y / w )  sin wt]Q - Qo} (8.3) 

with solution 

(8.4) 

8.2. Case of overcritical damping 

All we have to do to obtain the result corresponding to equation (8.4) in the case y > wo 
is to make the analytic continuation w + iT. 

9. Coherent states 

9.1. Case of undercritical damping 

From our reduction of the problem to equations (6.4), it is clear that we may use the 
number states of the operator BtB to construct coherent states of the lightly decaying 
oscillator in exactly the same way as for an undamped oscillator. Thus for any complex 
eigenvalue P of the operator B we may construct 

( 9 . 1 ~ )  

(9.lb) 

9.2. Case of overcritical damping 

As is to be expected, the situation is quite different in the case of overcritical damping. 
We can no longer construct states that will cohere for any length of time. We content 
ourselves by examining the disintegration of states of the undamped oscillator (1.5) 
formed at time t = 0. It is most convenient to start with a coherent state of the operator 
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C+C at time t = 0: 

where 

C+CIn) = nln),  n = 0 , 1 , 2  , . . . .  

(9.2a) 

(9.2b) 

When overcritical damping has acted for a time t this state evolves to 

1 %  t )  = U(t)la), (9.3) 

where equation (6.11) gives the evolution operator 

~ ( t )  = exp[-3qt(Ct2 - c2)]. (9.4) 

Using the method of Munn and Silbey (1978),  we can factorise the operator to give 

U ( t )  = exp($CT2 tanh q t )  exp[- (CtC +;) In cosh ~ t ]  x exp(-;C2 tanh qt). (9.5) 

Substituting into equation (9.3) and using Cia) = ala), exp(hC’C)(a) = 
exp((aI2 eA sinh h)la e’), we obtain 

(a ,  t )  = (sech ~ t ) ” ~  exp(-ta2 tanh qt) exp(&12 tanh2 qt) 

x exp($Ct2 tanh qt)la sec11 qt). (9.6) 

As the disintegration is of most interest when it first sets in, we consider the case when 
t << 1 ; then to first order in qt 

la, t ) =  (l-;qta2+:qtCt2)1a).  (9.7) 

The disintegration will occur mainly through the presence of the operator C’ which acts 
according to the equation 

c’la) = (a/aa +:cu*) /cx) .  (9.8) 

10. Conclusion 

A canonical Hamiltonian K has been derived which closely resembles a time-depen- 
dent integral of the motion found by Dodonov and Man’ko (1979).  However, the 
Hamiltonian K is time-independent (since (l/M) dM/dt is constant) and hence it 
possesses a stationary system of eigenvalues and eigenvectors. This enables us to 
analyse the quantal motion of a damped harmonic oscillator in a way that is straight- 
forward and reliable, depending as it does on well established procedures for time- 
independent Hamiltonians. 

An important feature of the system is the transition at critical damping y = w o  from 
an equivalent undamped harmonic oscillator of frequency w = (U:  - Y ~ ) ” ~ ,  in the case 
0 < y < wo, to a continuous-spectrum system, akin to a repulsive oscillator (Leach 
1980), in the case y > w o .  The behaviour of coherent states shows the essentially 
different natures of the system in these two cases. For O < y < w o ,  coherent states 
survive indefinitely, just as in the case y = 0, but for y > wo, owing to the effective 
repulsion, such states have zero lifetime. 

We have already made some comparisons with thc work of other authors. In § 3 we 
remarked on the factor exp(-:yt) in the wavefunctions of Hasse (1975) and of Tartaglia 
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(1977). We have changed the sign of y to fit in with our notation; in the reports of the 
above authors the factor actually gives a growth with time which is difficult to 
understand. This factor is seen to be absent from our result (3 .9 ,  the decay of the 
system being represented only in the xansformed coordinate Q = q exp(-yt) which 
occurs in the wavefunction (3.5). Normalisation is thus independent of the time. The 
analysis in D 5 ,  being based on MO rather than on M ( t ) ,  does not contain the exponential 
growth and decay factors which are present at all stages in the work of Hasse (1975) and 
of Dodonov and Man’ko (1979). For instance, the latter authors obtain results for the 
coordinate q( t )  = Q(t)  exp(yt) and the momentum p ( t )  = P(t )  exp(-yt) which contain 
both of the factors exp(*yt), whereas our expressions (4.3a, b )  give q(t)CCexp(yt), 

As we remarked in the Introduction, we have taken y > 0 because the physics of a 
cavity oscillator demands this choice. For the damped harmonic oscillator problem 
treated in isolation the sign of y may be changed, so that the growth and decay of q, p 
can be interchanged at will. This is an aspect of the uncertainty principle: if we observe 
q ( t ) ,  then we see a decay; similarly if we observe p ( t )  we see a decay. In any case the 
relation AQAP 5 $, which follows from equations (1.5), implies Aq Ap h/2. This 
resolves some earlier difficulties connected with the uncertainty principle (see e.g. 
Tartaglia 1977). 

A most important quantity is the energy E ( t )  stored in the system. Taking the cavity 
oscillator discussed in the Introduction, the energy is given by equation (1.6) and it is 
interesting to examine its behaviour for large values of t. In the case of undercritical 
damping (0< y < w o )  H is given by adding equations (4.10) and (4.11), and shows 
oscillatory behaviour. Taking a mean value of H, we may write for large values of t 

p ( t ) =  exp(-yt). 

E( t )  = exp(-2yt)E(O). (10.1) 

For overcritical damping, y > wo, we see from equation (4.16) that 

(10.2) 

Iri case (a) the system exerts only a slight repulsion and energy can be put in easily, but 
decays rapidly. In case (b) we have used equation (4.16) to examine the behaviour of 
E,(O). We expect T(O), V(0) and K to be of comparable magnitude, so that 
E,(O) << Ec(0). In tile latter case the system is essentially a ‘brick wall’: not much energy 
can be put into the system, but this small amount decays slowly. 
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